Задача

За неделю до Нового года мать уже приготовила торт, который вам очень хочется отведать (да, он настолько замечательный, что может храниться так долго).

Стоит пять коробок в ряд, и торт скрывается в одной из этих коробок. Каждую ночь мамочка перемещает торт в соседнюю коробку слева или справа. И каждое утро у вас есть время заглянуть только в одну коробку, чтобы попытаться найти лакомство. Вам нужно найти торт за неделю, ведь вы проказник и не можете ждать до самого праздника.

Подсказка

Если вы просто проверяете одну коробку в день, начиная с 1 и заканчивая 5 подряд, вы можете не найти торт. Он может быть в коробке 3, Если вы проверяете номер 2 — а на следующий день переместится в коробку 2, в то время как вы будете проверять коробку 3. Также вы не сможете постоянно проверять и одну и ту же коробку, ведь неуловимый торт постоянно может перемещаться — например, только между двумя коробками, которые вы не проверяете. Вам нужен план, который гарантирует, что вы найдете торт.

Решение (в отличие от торта) можно найти под фото.

Фото: Pixabay

Решение

Случайный поиск не гарантирует победы. Не сработает ни проверка каждой коробки, Ни проверка одной и той же коробки снова и снова. Тут нам придется сделать некоторые предположения. Например, чисто теоретически предположим, что торт находится в коробке с четными номерами, то есть либо в 2, либо в 4.

Допустим, вы проверяете номер 2. (Если вы найдете торт сразу, то вы победили и жизнь прекрасна, по крайней мере, пока мама не увидит, что один кусок съеден.) Если в коробке 2 торта нет, то вы знаете, что он должен быть в коробке 4 (опять же, это основано на первоначальном допущении о четных номерах).

Если торт находился в 4-й коробке в первый день, тогда на следующий он должен был переместиться либо в 3-ю, либо в 5-ю. Итак, на второй день проверьте номер 3. если его опять там нет, то он должен прятаться в 5-й коробке. Это значит, что на третий день торт вновь переместится в коробку 4, где вы его и найдете.

Приведенный выше сценарий — проверка коробок 2, 3 и затем 4 — всегда позволит вам выигрывать, если предположить, что мама начала игру с четной коробки. Но, конечно, это может быть не так. Теперь давайте посмотрим на сценарий, когда игра началась с нечетной коробки.

Если торт находится в коробке 1, 3 или 5, то на второй день он должен переместиться в коробку 2 или 4. на третий день он переместится обратно в коробку 1, 3 или 5. и на четвертый день торт снова должен оказаться либо во 2-й, либо в 4-й коробке.

Теперь вы можете почувствовать, что мы обнаружили что-то важное: если сначала торт был в коробке с нечетными номерами, то в начале четвертого дня он должен быть в коробке с четными номерами. Теперь мы должны объединить два сценария.

Из первого примера мы помним, что, когда вы проверяете номера 2, потом 3, а затем 4, Вы найдете приз, если он изначально скрывался под четным номером. Допустим, вы проверяете 2, 3 и 4 в первые три дня и не находите ничего. Это означает, что изначально торт прятался под нечетным номером. И также это означает, что в начале четвертого дня он должен быть в поле с четными номерами. Итак, на четвертый день, если вы не нашли ничего, вы повторяете процесс, потому что вы знаете, что теперь торт должен начать путешествие с четной коробки.

Итак, вот решение: проверьте коробку 2 в первый день, затем 3 на второй день и потом 4 на третий день. Если торт был в четной коробке, вы гарантированно найдете его в один из первых трех дней. Если не найдете, то просто повторите процедуру: проверьте коробку 2 на четвертый день, потом коробку 3 на пятый день и, наконец, номер 4 на шестой день. Несмотря ни на что, вы найдете лакомство.

День получился, торт, как обычно, — непревзойденный, а мать сильно не сердится, потому что любит вас.

***

Загадка адаптирована из задания в Popular Mechanic.

Клас
Панылы сорам
Ха-ха
Ого
Сумна
Абуральна

Хочешь поделиться важной информацией анонимно и конфиденциально?

Чтобы оставить комментарий, пожалуйста, активируйте JavaScript в настройках своего браузера